Dot Product

Norm

The norm of a vector $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ is the length/magnitude of \vec{v}. It is written $\|\vec{v}\|$ and can be computed from the Pythagorean formula

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

Dot Product

If $\vec{a}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$ are two vectors in n-dimensional space, then the dot product of \vec{a} an \vec{b} is

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} .
$$

Equivalently, the dot product is defined by the geometric formula

$$
\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta
$$

where θ is the angle between \vec{a} and \vec{b}.

24
Let $\vec{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{b}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, and $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
24.1 (a) Draw a picture of \vec{a} and \vec{b}.
(b) Compute $\vec{a} \cdot \vec{b}$.
(c) Find $\|\vec{a}\|$ and $\|\vec{b}\|$ and use your knowledge of the multiple ways to compute the dot product to find θ, the angle between \vec{a} and \vec{b}. Label θ on your picture.

24.2 Draw the graph of cos and identify which angles make cos negative, zero, or positive.

24.3 Draw a new picture of \vec{a} and \vec{b} and on that picture draw
(a) a vector \vec{c} where $\vec{c} \cdot \vec{a}$ is negative.
(b) a vector \vec{d} where $\vec{d} \cdot \vec{a}=0$ and $\vec{d} \cdot \vec{b}<0$.
(c) a vector \vec{e} where $\vec{e} \cdot \vec{a}=0$ and $\vec{e} \cdot \vec{b}>0$.
(d) Could you find a vector \vec{f} where $\vec{f} \cdot \vec{a}=0$ and $\vec{f} \cdot \vec{b}=0$? Explain why or why not.
24.4 Recall the vector \vec{u} whose coordinates are given at the beginning of this problem.
(a) Write down a vector \vec{v} so that the angle between \vec{u} and \vec{v} is $\pi / 2$. (Hint, how does this relate to the dot product?)
(b) Write down another vector \vec{w} (in a different direction from \vec{v}) so that the angle between \vec{w} and \vec{u} is $\pi / 2$.
(c) Can you write down other vectors different than both \vec{v} and \vec{w} that still form an angle of $\pi / 2$ with \vec{u} ? How many such vectors are there?

For a vector $\vec{v} \in \mathbb{R}^{n}$, the formula

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}
$$

always holds.

Distance

The distance between two vectors \vec{u} and \vec{v} is $\|\vec{u}-\vec{v}\|$.

Unit Vector

A vector \vec{v} is called a unit vector if $\|\vec{v}\|=1$.

25
Let $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$.
25.1 Find the distance between \vec{u} and \vec{v}.
25.2 Find a unit vector in the direction of \vec{u}.
25.3 Does there exist a unit vector \vec{x} that is distance 1 from \vec{u} ?
25.4 Suppose \vec{y} is a unit vector and the distance between \vec{y} and \vec{u} is 2 . What is the angle between \vec{y} and \vec{u} ?

Orthogonal

Two vectors \vec{u} and \vec{v} are orthogonal to each other if $\vec{u} \cdot \vec{v}=0$. The word orthogonal is synonymous with the word perpendicular.
26.2 Find two vectors orthogonal to $\vec{b}=\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]$. Can you find two such vectors that are not parallel?
26.3 Suppose \vec{x} and \vec{y} are orthogonal to each other and $\|\vec{x}\|=5$ and $\|\vec{y}\|=3$. What is the distance between \vec{x} and \vec{y} ?

