Dot Product

- Norm

DEFINITION

24

 $\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2+\cdots+a_nb_n.$

Equivalently, the dot product is defined by the geometric formula

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$$

where θ is the angle between \vec{a} and \vec{b} .

 $\lfloor b_n \rfloor$

Let
$$\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, and $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

24.1 (a) Draw a picture of \vec{a} and \vec{b} .

- (b) Compute $\vec{a} \cdot \vec{b}$.
- (c) Find $\|\vec{a}\|$ and $\|\vec{b}\|$ and use your knowledge of the multiple ways to compute the dot product to find θ , the angle between \vec{a} and \vec{b} . Label θ on your picture.

24.2 Draw the graph of cos and identify which angles make cos negative, zero, or positive.

		A		
1.14		 		
				S
		1		
4.1		1		
-	 	 		
		1		
		 1 .	1	1
				÷ ÷
1				
ł				

- 24.3 Draw a new picture of \vec{a} and \vec{b} and on that picture draw
 - (a) a vector \vec{c} where $\vec{c} \cdot \vec{a}$ is negative.
 - (b) a vector \vec{d} where $\vec{d} \cdot \vec{a} = 0$ and $\vec{d} \cdot \vec{b} < 0$.
 - (c) a vector \vec{e} where $\vec{e} \cdot \vec{a} = 0$ and $\vec{e} \cdot \vec{b} > 0$.
 - (d) Could you find a vector \vec{f} where $\vec{f} \cdot \vec{a} = 0$ and $\vec{f} \cdot \vec{b} = 0$? Explain why or why not.

24.4 Recall the vector \vec{u} whose coordinates are given at the beginning of this problem.

- (a) Write down a vector \vec{v} so that the angle between \vec{u} and \vec{v} is $\pi/2$. (Hint, how does this relate to the dot product?)
- (b) Write down another vector \vec{w} (in a different direction from \vec{v}) so that the angle between \vec{w} and \vec{u} is $\pi/2$.
- (c) Can you write down other vectors different than both \vec{v} and \vec{w} that still form an angle of $\pi/2$ with \vec{u} ? How many such vectors are there?

			:	:
			:	
			-	
			:	
 	2	 		
			:	
 	}····	 	 	
			1	
			:	:
			:	
	:		:	
 		 	:	
		 	- - - - - - - - - - - - - - - - - - -	

For a vector $\vec{v} \in \mathbb{R}^n$, the formula

$$\|\vec{\nu}\| = \sqrt{\vec{\nu}\cdot\vec{\nu}}$$

always holds.

– Distance –

The *distance* between two vectors \vec{u} and \vec{v} is $\|\vec{u} - \vec{v}\|$.

Unit Vector

A vector \vec{v} is called a *unit vector* if $\|\vec{v}\| = 1$.

25 Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$.

25.1 Find the distance between \vec{u} and \vec{v} .

25.2 Find a unit vector in the direction of \vec{u} .

25.3 Does there exist a *unit vector* \vec{x} that is distance 1 from \vec{u} ?

25.4 Suppose \vec{y} is a unit vector and the distance between \vec{y} and \vec{u} is 2. What is the angle between \vec{y} and \vec{u} ?

Orthogonal

Two vectors \vec{u} and \vec{v} are *orthogonal* to each other if $\vec{u} \cdot \vec{v} = 0$. The word orthogonal is synonymous with the word perpendicular.

- 26
- 26.1 Find two vectors orthogonal to $\vec{a} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. Can you find two such vectors that are not parallel? 26.2 Find two vectors orthogonal to $\vec{b} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$. Can you find two such vectors that are not parallel?
- 26.3 Suppose \vec{x} and \vec{y} are orthogonal to each other and $||\vec{x}|| = 5$ and $||\vec{y}|| = 3$. What is the distance between \vec{x} and \vec{y} ?